色综合中文综合网_性猛交娇小69hd_久久精品99久久久久久_欧美日韩精品一区二区三区四区 _97视频色精品_国产高清精品久久久久_日日鲁鲁鲁夜夜爽爽狠狠视频97 _国产成人免费视频精品含羞草妖精 _熟女少妇在线视频播放_精品人妻一区二区三区麻豆91 _久久女同性恋中文字幕_一区二区福利视频

初創公司即融資上億,這個“人造超級大腦”賽道為什么不是噱頭?

一文看盡類腦計算

楊凈 豐色 發自 凹非寺

量子位 | 公眾號 QbitAI

這不前陣子,馬斯克揚言已將大腦上傳到云端,并與虛擬版本進行交談。

關于人造大腦這事兒,再次引發了熱議:

人類是否能構建跟人腦一樣的機器腦?

事實上這個問題,不光是理念,更已經是一種實踐方向——歸屬于類腦計算的范疇。作為下一代人工智能的“種子選手”,它有望打破傳統馮諾伊曼架構,引領新的計算變革。

不過發展至今,類腦計算始終呈現出正負兩極的評價。

一面是業內如火如荼的融資進展。據相關機構預測,2035年類腦計算的市場規模約200億美元。另一面則是腦機制研究不深入、沒法復刻出相仿的神經網絡等質疑。

到底是口耳相傳的噱頭,還是實打實的硬科技突破?

借著這一契機來盤一盤類腦計算到底什么來頭?

什么是類腦計算

與人工智能、機器學習類似,類腦計算目前沒有明確的定義。以至于有關它的英文表達,也不止一種:

Brain-like Computing(仿腦計算);Brain-inspired Computing(腦啟發計算);Neuromorphic Computing(神經形態計算)……

不過字面拆解來看,類腦計算就是借鑒生物大腦的信息處理機制,以此誕生的一種新型計算形態。

與現有計算機相比,生物大腦(以人腦代表)有諸多優勢。中科院院士、浙大校長吳朝輝曾撰文,主要有以下幾點:

  • 功耗低,僅20瓦左右;
  • 容錯性強,即便少部分神經元死亡,對整體功能影響不大;
  • 并行處理信息;
  • 神經網絡可塑性好,可根據環境變化自主學習和進化。

而以神經科學為導向、以大腦為模仿對象的類腦計算,既保留計算機本身優勢,又疊加了大腦處理機制的buff,比如低功耗、自主決策學習、并行處理等特點,自然成為引領新一代計算變革的種子選手。

近年來,人工智能,尤其是深度學習取得了令人矚目的成果,在某些方面的表現甚至已經超越了人類。

但與自然智能相比,深度學習在效率、功耗以及通用性上仍有一定的局限性,遠沒有達到真正意義上的智能程度。

類腦計算另辟蹊徑,于是就成為科學家們的研究重點。

但想要實現真正的類腦并非那么容易,即便上世紀末科學家們就已經開始探索。清華大學集成電路學院何虎教授將其形容為珠峰。誰也不清楚,哪一條路會攀上頂峰。

目前,類腦計算大體可分成三種探索方向:

模擬神經元結構和功能,簡單來說就是仿真真實大腦機理,進而探索大腦內部的“運作模式”。

最新代表性進展來自北京智源人工智能研究院給出的“智能線蟲”——天寶1.0

它完整模擬出秀麗隱桿線蟲的神經系統——302個神經元,以及數千個連接,并為它構造了3D流體仿真環境。它可以在其中蠕動前行,并具備簡單趨利避害的能力。

不過這種逆向工程——從生物體環境提取出抽象的數字模型,存在一定的局限性。

一言以蔽之,就是生物大腦本身的復雜度。

正如何虎教授所介紹:一方面,大腦環境過于復雜。抽象出的大腦模型,相當于只是簡化版。另一方面,結構和功能之間“有壁”。即便成功構建了大腦結構,距離真正實現其功能還有很長的路要走。

這一路徑目前還停留在學研階段,在此就不進一步深入展開。

核心來看剩下兩種路徑:模擬神經網絡以及開發新型電子設備。更通俗來講,即軟件算法層面,或硬件芯片層面上對大腦機制的模擬。

為了便于理解,將類腦計算與當下主流的深度學習作為對比。

先來看軟件算法層面,生物神經元是以脈沖的形式將信息傳遞到下一個神經元層,放在類腦計算的研究中,即演化為脈沖神經網絡SNN

SNN,相較于DNN,更忠實地模擬大腦神經元和連接電路,其信息載體為脈沖序列,有空間域和時間域兩個維度來傳遞信息,在中科院李國齊教授看來,SNN兼具生物合理性與計算高效性。

△ SNN與DNN(ANN)的區別,圖源:智源社區《中科院李國齊:一文梳理類腦計算的前世今生》

進一步的,北京理工大學楊旭博士分享了類腦算法與傳統算法模型之間的不同,核心有三個層面:

  • 連接方式不同,稀疏連接與全連接;
  • 驅動方式不同:事件驅動與數據驅動;
  • 學習方式不同:DNN是從大量數據中總結出規律,而SNN則是因果學習,自適應能力強。

這也就導致SNN所表現出的功耗更低,效率更高以及自適應能力更強。

但與此同時,也不免有人質疑SNN的有效性。

因為關于SNN訓練,目前還面臨著諸多挑戰,包括脈沖神經元中復雜的時空動力過程、脈沖信息不可導、脈沖退化和訓練精度損失等,也就進一步導致當前尚未存在一種統一的、且公認有效的算法來訓練它。

具體舉個例子,如楊旭博士所說,比如由于SNN中的脈沖不可微分,DNN中非常成熟的梯度下降法就沒法直接應用,但現在由于對大腦機制的理解還不夠,就找不到一個能和該方法同樣有效的訓練方法。

處于同一境地的,還有類腦芯片

目前也沒有統一的技術方案(此處統一指代的是具有超低功耗的計算芯片)。

世界上最早的一款類腦芯片,當屬于IBM于2011年研制出的兩個具有感知認知能力的硅芯片原型。

隨后像英特爾、斯坦福、曼大、浙大、清華也都相應推出自己的芯片方案。

2019年,第三代天機芯登上Nature封面,再度掀起對類腦芯片的熱議。芯片搭載在無人駕駛自行車上,實現了自主決策、實時視覺探測、自動避障等功能。

除此之外,另外兩種趨勢也不容忽視。

一種是類腦感知芯片,也叫做神經形態傳感器,即對類腦觸覺、視覺、聽覺等傳感器的研究,開發具有高時間分辨率、低延時、低功耗的新型傳感器,在機器人、物聯網等方面有應用價值。

比如三星的動態視覺傳感器(DVS),配在數碼相機上就能捕捉2000幀的畫面,只消耗300毫瓦的電能。

另一種則是材料的延伸,開發基于納米等新材料的芯片,比如像憶阻器、相變存儲器、電化學存儲器。

可以感知到的是,兜兜轉轉近十年的類腦芯片,目前還市場標準還未統一,應用場景也多樣。更多芯片方案還處于自我更新迭代當中。

算法如此,芯片如此,背后的核心原因其實也不難理解。

一方面是理論知識不夠,受限于對大腦機制的了解;另一方面則是工程化難題,從理論落到實際。

也正因此,類腦計算相關的質疑始終不少。

甚至有人直言:噱頭而已。

當前行業現狀如何?

是不是真的噱頭,且來看當前的行業現狀。

事實上,我們已經可以見到類腦計算商業化的身影。放眼全球,從2013年開始便有相關創企開始冒頭,國內則集中爆發于2017-2018年

據不完全統計,全球類腦企業公司已有20家左右,雖然融資輪次多集中于A輪,但各家公司拿到的融資金額少則千萬多則上億,甚至還出現了一家上市企業,來自法國的Brainchip。

跟更多前沿產業一樣,有幾家是直接從相關大學或研究所的類腦研究成果中孵化而來,Brainchip在內包括Innatera、時識科技、靈汐科技、優智創芯等。

△ 國外類腦企業代表

△ 國內類腦企業代表

從這些公司的技術路線上來看,主要有兩條路徑,恰好也是前面提到實現類腦智能的兩種解決思路。

一是芯片優先,即在硬件層面上進行對大腦機制的模擬。目前大多數類腦企業都是這個思路。

以優先上市的Brainchip為例,他們研發出了世界上第一款商用神經擬態處理器Akida,面向邊緣AI計算,去年10月開始量產。今年2月還與奔馳達成合作,用于座艙內的感知和識別。

最新融資約4000萬元的荷蘭企業Innatera,去年推出了一款基于SNN的神經擬態加速器,主要用于語音識別、生命體征監測和雷達等。

再比如專注于圖像和視頻領域的類腦企業PROPHESEE,通過模仿人眼和大腦的工作方式,開發出了一款類腦智能視覺處理器,能夠幫助提高自動駕駛、工業自動化、物聯網、安防以及AR/VR等領域的識別效率。

國內方面的代表,比如時識科技,其產品既包括可達到0.1mW的超低功耗計算芯片,還包括可用于面部檢測、實時手勢識別、實時目標分類等視覺任務的各類動態視覺類腦感知芯片。

做感知芯片的不算少,還包括專注類腦觸覺芯片的他山科技(該芯片于去年9月流片),專注類腦嗅覺芯片的中科類腦(主要用于火災預警等場景)等。

靈汐科技的重點是異構融合類腦計算芯片,該類芯片只需12W功耗即可提供32Tops的INT8算力和6Tflops的FP16算力。
……

這種以芯片優先的思路,最大好處是可以率先實現類腦的有效性,發揮它的低功耗優點。可以看到,目前這些產品已經大多落地于物聯網、邊緣計算等場景。

不過,這種思路也有它的局限性。我們知道,市面上的每一種產品實際上都是工程落地的問題。

但是在工程落地之前,要先把它最根本的物理原理理解清楚,變成算法,然后再去尋找最合適的工程方法,去做芯片,把它變成產品落地。

也就是說,芯片其實是為算法服務的。于是乎產業界出現了另一種聲音:

如果連一個有效的算法都沒有,相關的硬件和硬件加速又從何談起呢?

這也恰好是第二種技術路線:以算法優先,然后再以算法定義芯片。

事實上,這種方式并不陌生,早在人工智能浪潮開始時,就有一波AI公司走的這條路徑,比如曠視、地平線、商湯等。

因為用“算法定義硬件”,往往可以實現芯片性能的最大化。

像深度學習加速器,就是“算法定義硬件”的典型,當傳統的芯片hold不住越來越快的新算法時,我們就通過優化算法來獲得計算資源需求和內存需求更小的新模型,讓芯片得以“適應”。

這種優勢延伸到類腦領域,可以讓開發出來的類腦算法運行在普通的芯片架構上,讓傳統芯片也能擁有此前不具備的能力。

因此,也有一些企業選擇了這條路。

優智創芯,就是當前代表。

這家公司主要解決的是深度學習中的不可解釋性問題,自研了基于SNN的可解釋因果學習算法系統(CLAS Causal Learning Algorithm System)。

該系統下的因果學習算法最大的特點就是像人腦一樣,在學習權值的調節過程中,會根據因果關系去決定權值該增加還是減少——

從而做到并非單純地去模仿數據,而是去理解數據產生背后的具體過程是什么樣的。

當然,最后還需要利用強化學習去加強每個因果過程(即前后神經元之間的連接關系)。

在此,楊旭博士解釋道,通過模仿數據找規律的方式就是現在ANN的工作方式,這種網絡對數據樣本質量的要求非常高,而后者,在SNN上采取因果學習的方法,就沒有這種要求了,甚至可能只需小樣本就可以做到智能通用。

“就像人類認貓認狗,我們只需要認識路邊的幾只就知道狗長什么樣,不需要把全世界的都看一遍。”

對于因果學習的合理性,何虎教授則表示,我們這個世界本身就是一套因果系統,人類文明可以說就是靠著不斷去問為什么而往前發展的。就像學生,要真正學會解一道數學題,靠不求甚解地背過程是不可能的,還是需要知道每一步都是如何推理出來,即每一步的因果關系。

那么因果學習系統能帶來的最大好處是什么呢?

決策,何虎教授表示。

而優智創芯開發的這套因果學習算法一開始就瞄準的正是深度學習中的非完美信息決策問題(以自動駕駛為例,可能會出現的非完美信息就包括物體遮擋,道路交通標志不完整、不準確等情況)。

因此,針對該類問題的經典場景之一——打撲克,該公司實現了首個基于SNN的斗地主AI——“智玩”

最終,“智玩”通過了107個人類個體樣本不嚴謹圖靈測試,擬人化程度超過80%,再經過人類個體樣本訓練,個性化程度達到了85%,勝率最高做到了49%,實現了“像人一樣玩游戲”的目標。

除了“智玩”機器人,優智創芯還利用其自研的CLAS因果學習算法系統設計了類腦芯片。

其中,旗艦類腦芯片“思辨1號”對標SpiNNaker,采用28nm工藝,主頻為2 GHz,支持RISC-V Vector 1.0指令集,同時支持AI加速(算力可達4TOPS)和類腦計算(SNN因果學習算法),單芯片同時最大可實現100萬個神經元運算的同時,功耗不高于2W,性能可以與英特爾Loihi2媲美。

除此之外,優智創芯還構建出了基于CLAS因果學習算法系統和類腦芯片組成的整體解方案——“硅腦”全自主無人系統平臺

基于功耗小、成本低、具有可解釋性以及可以自主靈活決策的特點,該平臺聚焦在無人機、無人駕駛、機器人的應用,可以擴展到AIGC、元宇宙、腦科學研究等領域。

由該平臺衍生出來的K50/K51型SFS全自主無人飛行系統(類腦計算盒子)直接掛載在無人機上即能夠實現未知地域且離線狀態下的全自主飛行任務,可以用于電力巡線、海岸、植被、軌道交通、礦山、消防等多場景全自主無人飛行巡查,也可用于軍事領域的武器突防等。

以及衍生出來的C60型SDS全自主無人駕駛系統(類腦計算盒子),正在與多家車企合作驗證,相信不久的將來,就會出現正真意義上的L4+級別無人駕駛汽車在城市中自由穿梭。

市場規模將達200億美元

綜上,我們可以看到,類腦計算并非“束之高閣”,而是已經走出實驗室,開始了商業化的摸索。

據Yole Development預測,2035年類腦計算市場將占人工智能總收入的15%-20%,市場規模將達到 200億美元

雖然目前領域還處于發展的早期,面臨著諸多待解難題,但已經顯現出了勢不可擋的趨勢。我們認為理由有三。

首先,縱觀人工智能發展的歷史,從ANN到DNN,其實都是基于對大腦的模仿。

比如2016年擊敗圍棋世界冠軍李世石的AlphaGo,作為一個深度學習神經網絡,它所利用的多層訓練法就借鑒了一項認知科學的研究結果:

人們認識事物并不是通過直接分析,而是依靠一種逐層抽象的認知機制,即首先學習簡單的概念,然后用它們去表示更抽象的。

△ 基于深度學習的圖像識別過程中的逐層抽象過程

這種借鑒造就了AlphaGo的成功。

當然,諸如AlphaGo此類DNN都還是對大腦功能相對簡單和抽象的模仿,存在著各種局限性。

第三代神經網絡SNN由此誕生,除了神經元和突觸狀態之外,SNN還將時間概念納入其中,實現了更高級的大腦生物神經模擬水平,有望打破現有的神經網絡在功耗、算力、樣本數量和質量等方面的限制。

因此,我們說,類腦計算不失一種順勢而為的科技發展趨勢。

其次,要從當下最火熱的通用人工智能(AGI)說起。

毫無疑問,現階段的一些AI技術已經可以在某些特定任務上打敗人類,但沒法在所有技能上勝出。

這就像北京師范大學認知神經科學和學習國家重點實驗室研究員萬小紅博士等所說,人工智能更專業,自然智能更通用

更通用的強人工智能是AI發展的終極目標。就在一個多月之前,圖靈獎得主LeCun公布的未來十年研究計劃,就將AGI作為核心目標。

由于人類智能的核心是大腦,模擬大腦的類腦計算也就成為了實現AGI的一大重要路徑。

最后,再將目光聚焦到當下,可以說,我們從未像今天這樣需要新型計算機。

調查顯示,全球每三四個月對于算力的需求就會翻一倍,這個增長速度已經遠超摩爾定律和Dennard縮放定律。

但傳統馮·諾伊曼計算架構存算分立的設計,讓處理器即使再快也要等內存,算力根本無法得到提高。

作為新型計算形態的一種,類腦計算芯片有望打破這一僵局。

此外,值得一提的是,雖說目前人類對大腦的研究還遠不夠透徹,但北京理工大學楊旭博士和北京師范大學萬小紅博士——兩位一個來自計算機科學領域,一個來自認知神經科學,都一致認為:

這并不會真正妨礙類腦計算向前發展。

相反,他們都表示,AI技術的發展反過來還可以促進腦科學的研究,兩者其實是相互成就的關系。

那么,等到真正的類腦時代來臨之時,它將會和傳統的人工智能技術并存,還是完全取代后者?又將會給人類社會帶來怎樣的變革?

這無疑充滿了想象的空間。我們拭目以待。

最后,結尾再拋給大家兩個開放問題

1、你認為類腦智能是否會產生意識?

2、類腦智能是否會像生物大腦一樣也會產生遺忘?

歡迎討論。

參考文獻:
[1]https://news.sciencenet.cn/htmlnews/2022/1/472375.shtm
[2]https://www.sohu.com/a/424817554_129720
[3]https://www.sgpjbg.com/info/25374.html
[4]https://www.ahpst.net.cn/News/show/18405.html
[5]https://s3.i-micronews.com/uploads/2021/05/YINTR21214-Neuromorphic-Computing-and-Sensing-2021-Flyer.pdf
[6]張臣雄 .《AI芯片:前沿技術與創新未來》

版權所有,未經授權不得以任何形式轉載及使用,違者必究。
爱爱爱视频网站| 日韩欧美亚洲天堂| 亚洲欧美偷拍三级| 女女互磨互喷水高潮les呻吟| 激情五月婷婷基地| 国产伦精品一区二区三区四区视频 | 亚洲午夜女主播在线直播| 国产午夜精品视频免费不卡69堂| 狠狠爱一区二区三区| 婷婷久久伊人| www.av中文字幕| 亚洲最大天堂网| 国产又粗又黄又爽视频| www.日韩在线观看| 日本sm残虐另类| 国产无一区二区| 一区二区三区欧美日韩| 欧美成人精品福利| 久久久久久久久亚洲| 欧美日本啪啪无遮挡网站| 国产欧美在线播放| 青青草久久网络| 欧美一级视频在线| 精品一区二区免费视频| 国产精品人妖ts系列视频| 偷窥国产亚洲免费视频| 正在播放亚洲1区| 国产精品999999| 日本免费高清不卡| 91视频在线视频| 国产精品77777| 一本久道久久综合中文字幕| 永久免费毛片在线播放不卡| 成人免费xxxxx在线观看| 男人j进女人j| 久久久精品三级| 国产精品第72页| 国产裸体歌舞团一区二区| 一区二区在线免费观看| 91亚洲精品在线观看| 手机看片福利日韩| 香蕉视频免费看| 亚洲国产精品影院| 亚洲欧洲日产国产网站| 久久久影院一区二区三区| 国产无套粉嫩白浆内谢的出处| 少妇高潮惨叫久久久久| 免费成人在线观看| 懂色aⅴ精品一区二区三区蜜月| 日韩激情av在线免费观看| 国产综合色一区二区三区| 日本在线一二三区| 亚洲精品综合久久| 欧美午夜激情视频| 成人在线视频网| 国产视频1区2区| 久热成人在线视频| 91成人免费观看| av网址在线观看免费| 伊人成色综合网| 视频一区二区国产| 国产亚洲美州欧州综合国| 亚洲欧美日韩在线一区| 日本高清视频精品| 欧美大波大乳巨大乳| 精品国偷自产在线视频| 99爱精品视频| 国产91视觉| 人妻av无码专区| 91在线免费视频| 欧美 日韩精品| 国产又黄又粗又爽| 欧美日韩三级视频| 亚洲视频精品在线| 懂色av粉嫩av浪潮av| 欧美激情一区二区在线| 91精品国产乱码久久久久久久久| 男人插女人下面免费视频| 亚洲国产乱码最新视频| 热久久精品国产| 精品人伦一区二区三区蜜桃网站| 天天影视色综合| 欧美日韩午夜在线视频| 午夜理伦三级做爰电影| 国产亚洲制服色| 欧日韩一区二区三区| 欧洲成人一区二区三区| 欧美成人一二三区| 一级片在线观看视频| 国产精品极品美女在线观看免费| 成人无码精品1区2区3区免费看| 日韩精品一区二区在线| 日本黄网站免费| 91黄色激情网站| 日韩不卡视频一区二区| 国产日产亚洲精品系列| 免费午夜视频在线观看| 欧美精品在线视频| 国产精品50p| 欧美亚洲高清一区| 中文字幕第21页| 91精品国产免费久久综合| 六月婷婷激情网| 国产亚洲精久久久久久| 精品人妻一区二区三区四区在线 | 成人h片在线播放免费网站| 激情综合网av| 波多野结衣精品久久| 久久无码av三级| 欧美日韩另类综合| 久久国产综合精品| 凹凸日日摸日日碰夜夜爽1| 亚洲精品国产精品久久清纯直播 | 第一福利永久视频精品| 99热这里只有精品4| 欧美午夜美女看片| 免费看黄色三级| 在线观看日韩毛片| 日韩av一卡二卡三卡| 一本色道久久综合狠狠躁篇怎么玩| 亚洲av综合色区| 亚洲欧美国产视频| www.黄色片| 国产乱子伦精品无码专区| 亚洲精品999| h狠狠躁死你h高h| 久久6精品影院| 久久精品国产第一区二区三区| 亚洲天堂2018av| 久久久久久久久久久91| 久久精品一二三| 中文字幕不卡每日更新1区2区| 日韩在线播放av| 亚洲精品午夜国产va久久成人| 欧美最猛性xxxxx(亚洲精品)| 国产黄色91视频| 亚洲欧美偷拍另类| 97人人模人人爽人人喊中文字| 国产一级免费观看| 在线视频一区观看| 亚洲欧美另类国产| 久久久www免费人成精品| 亚洲成人生活片| 色在人av网站天堂精品| 国产蜜臀av在线一区二区三区| 紧身裙女教师波多野结衣| 国产亚洲欧美日韩精品| 26uuu久久综合| 真实乱偷全部视频| 国产亚洲精品一区二区| 91美女在线视频| 欧美精品日韩在线| 亚洲18私人小影院| 午夜精品福利在线| 亚洲一区电影在线观看| 日本成人黄色| 欧美激情在线一区| 日本久久一区二区| 久久精品人人| 性生活免费观看视频| 久久精品国产综合| 都市激情亚洲色图| 天天色综合av| 毛片av免费在线观看| 91精品国产自产在线观看永久| 欧美精品免费视频| caoporn国产精品| 91精品国自产在线| 人妻无码久久一区二区三区免费| 国产富婆一区二区三区| 久久精品成人动漫| 91在线视频18| 日韩视频在线一区| 国产欧美综合在线| 亚洲精品国产无码| 国产精品偷伦视频免费观看国产| 91美女视频网站| 强伦人妻一区二区三区| 日本久久91av| 一区二区三区免费观看视频| 一级在线免费视频| 欧美私人情侣网站| 亚洲欧洲日韩综合一区二区| 成人污网站在线观看| 精品电影一区二区三区| 国产三级三级在线观看| 欧美精品一区二区三区在线看午夜| 欧美中文字幕久久| 亚洲一线二线三线视频| 九九视频在线免费观看| 久久综合一区| 欧美日韩亚洲视频| 亚洲人吸女人奶水| 国产日韩视频一区二区三区| 久久久精品日韩| 亚洲精品77777| 午夜精品一区二区三区四区| 国产成人精品a视频一区www| 欧美精品免费在线| 亚洲动漫第一页| 国产亚洲一区二区三区四区| 日韩高清电影一区| youjizz.com国产| 亚洲v国产v在线观看| 国外成人免费视频| 成人av在线亚洲| 青青草精品毛片| 久久中文字幕一区| 国产三级aaa| 91社区视频在线观看| 丝袜美腿中文字幕| 欧美精品v日韩精品v国产精品| 国产在线观看精品| 欧美精品久久久久a| 欧美专区在线播放| 国产精品美女av| 精品日韩99亚洲| 欧美精品一区视频| 在线播放视频一区| 国产欧美一区二区精品性| 国产婷婷一区二区| 成人免费在线观看入口| 曰韩精品一区二区| 欧美日韩国产在线看| 亚洲精品视频自拍| 久久精品国产精品亚洲综合| 日本在线播放一区二区三区| 狠狠色2019综合网| 久久久久亚洲蜜桃| 国产精品丝袜91| 久久精品国产一区二区| 成人av免费在线| 99视频国产精品免费观看a| 刘玥91精选国产在线观看| 中文字幕国产在线观看| 一区二区视频在线免费观看| 亚洲人做受高潮| 欧美日韩综合在线观看| 在线亚洲欧美日韩| 久草资源在线视频| 国产成人久久精品77777综合 | 日韩av在线电影| 亚洲欧美在线不卡| theav精尽人亡av| 亚洲欧美日韩三级| 成人免费精品动漫网站| 在线观看视频你懂得| 久久久精品在线视频| 少妇精品无码一区二区三区| 美女福利视频在线| 91超薄肉色丝袜交足高跟凉鞋| 少妇性l交大片| 国产suv精品一区二区68| 怡春院在线视频| 国产麻豆精品95视频| 精品美女永久免费视频| 亚洲日本中文字幕| 91亚洲va在线va天堂va国 | 日本一不卡视频| 国产美女在线精品| 性高潮久久久久久久久久| 国产一区二区三区国产| 激情成人在线视频| 另类色图亚洲色图| 日韩不卡一二区| 国产精品成人一区二区三区电影毛片 | 蜜臀尤物一区二区三区直播| av在线不卡观看免费观看| 91福利资源站| 国产精品网红福利| 中文字幕第21页| 9191国产视频| 瑟瑟视频在线免费观看| www.色国产| 中文字幕国产精品一区二区| 日韩欧美一二三| 91精品视频网站| 激情小说欧美色图| 蜜臀av一区二区三区有限公司| 色香蕉在线视频| 91久久精品国产91性色tv| 欧美在线观看视频| 国产精品日韩高清| 免费观看黄网站| www夜片内射视频日韩精品成人| 中文字幕日韩精品一区| 午夜精品理论片| 又黄又爽又色的视频| 秋霞电影网一区二区| 日韩一区二区三区免费看 | 四虎永久在线精品无码视频| 99热这里只有精品在线| 亚洲国产美国国产综合一区二区| 亚洲mm色国产网站| 亚洲国产一区二区精品视频 | 中文字幕永久免费| 久久久影院官网| 久久中文字幕视频| 亚洲自拍第三页| 欧美成人午夜激情| 久草福利视频在线| 中文字幕日韩第一页| 欧美一区二区视频在线观看2022| 国产一级片播放| 国内精品久久久久影院 日本资源| 欧美人与禽zoz0善交| 一区二区三区四区视频精品免费| 俄罗斯女人裸体性做爰| 亚洲成人精品影院| 亚洲一区日韩精品| 91久久免费观看| 亚洲国产一区二区精品视频| 精品国产av 无码一区二区三区 | 国产肉体ⅹxxx137大胆| 日韩一区免费视频| 久久久之久亚州精品露出| 国产视频手机在线播放| 91在线观看一区二区| 日韩欧美国产二区| 国产美女主播视频一区| 国产精品福利网站| 国产精品扒开腿做爽爽| 国产精品亲子乱子伦xxxx裸| 狠狠久久综合婷婷不卡| 天堂av中文字幕| 欧美成年人视频| 手机免费观看av| 91成人国产精品| 97中文字幕在线观看| 欧美综合一区二区| 人妻无码中文久久久久专区| 亚洲欧美中日韩| 国产精品拍拍拍| 日韩一区二区三区四区| 性农村xxxxx小树林| 欧美色综合网站| 亚洲欧美综合视频| 亚洲成人精品久久| 亚洲黄色小说在线观看| 久久综合九色综合97婷婷女人| 国产欧美婷婷中文| 精品二区在线观看| 97在线视频精品| 国产无人区码熟妇毛片多| 亚洲欧美成人网| 丝袜美腿中文字幕| 欧美大片免费观看| 中文字幕永久免费| 精品国产免费人成电影在线观看四季 | 毛茸茸free性熟hd| 欧美老肥婆性猛交视频| 久久久精品免费观看| 亚洲精品久久久久久宅男| 精品日韩中文字幕| 国产精品999在线观看| 久久在线视频在线| 国产美女自慰在线观看| 国产精品久久久久久久久久三级 | 欧美日韩在线免费播放| 亚洲国产精品麻豆| 古装做爰无遮挡三级聊斋艳谭| 欧美日本一区二区三区| 亚洲激情 欧美| 欧美综合第一页| 久久久一区二区三区捆绑**| 久久久久久久午夜| 亚洲成av人片在线| 亚洲国产精品一区二区久久hs| 欧美主播福利视频| 国产日韩欧美亚洲| 农村妇女精品一区二区| 国产精华一区| 精品国产31久久久久久| 国产女18毛片多18精品| 精品国产乱码久久久久久久软件| 国产精品热久久久久夜色精品三区| 中文字幕66页| 欧美黑人性猛交| 国产曰批免费观看久久久| 久久久久99人妻一区二区三区| 亚洲天堂2020| 无码精品人妻一区二区| 亚洲成人蜜桃| 亚洲一区在线免费观看| 老熟妇高潮一区二区三区| 日本不卡一区| 性高潮视频在线观看| 欧美中日韩免费视频| 欧美精品v国产精品v日韩精品 | 国产网址在线观看| 国产精品视频网站| 国产午夜亚洲精品羞羞网站| 亚洲精品乱码久久| 欧美极品少妇xxxxx| 免费观看一级特黄欧美大片| 久久久久网址| 91激情五月电影| 免费又黄又爽又猛大片午夜| 色撸撸在线观看| 神马午夜在线观看| 亚洲av无码一区二区二三区| 国产精品美女黄网| 亚洲色图视频网站| 久久精品视频8| 三级在线免费观看| 97在线观看视频| 亚洲大片一区二区三区| 国产又粗又长又爽| 超碰97人人人人人蜜桃| 亚洲欧美激情在线视频|