色综合中文综合网_性猛交娇小69hd_久久精品99久久久久久_欧美日韩精品一区二区三区四区 _97视频色精品_国产高清精品久久久久_日日鲁鲁鲁夜夜爽爽狠狠视频97 _国产成人免费视频精品含羞草妖精 _熟女少妇在线视频播放_精品人妻一区二区三区麻豆91 _久久女同性恋中文字幕_一区二区福利视频

李開復圖靈獎推薦信曝光:AI時代里,Hinton是最值得嘉獎的人

72歲的Geoffrey Hinton更是眾望所歸,在年盛一年的呼聲之后,終于加冕圖靈獎。

李根 唐旭 發(fā)自 凹非寺

量子位 報道 | 公眾號 QbitAI

李開復圖靈獎推薦信曝光:AI時代里,Hinton是最值得嘉獎的人

3月27日,2018年圖靈獎嘉獎正式揭曉:深度學習三巨頭Yoshua BengioGeoffrey HintonYann LeCun一起榮膺計算機領域的最高榮譽。

ACM評委會頒獎詞稱:表彰他們以概念和工程的突破,讓深度神經網絡成為計算關鍵部件。

其中,72歲的Geoffrey Hinton更是眾望所歸,在年盛一年的呼聲之后,終于加冕圖靈獎。

評選揭曉后,量子位獲悉,其實今年全球多位AI領域影響力科學家,就已經提名Geoffrey Hinton且撰寫了推薦信。

按照圖靈獎提名推薦流程,推薦人須與被推薦者曾經共事。

所以包括Google研究負責人Jeff Dean、創(chuàng)新工場董事長李開復、微軟研究院掌舵者Eric Horvitz,以及此次一同獲獎的Yann LeCun等,都因曾經共事而提名了Geoffery Hinton。

現在,我們獲得授權,披露李開復向ACM圖靈獎評選委員會提名Geoff Hinton的推薦信。

需要說明的是,原件為英文,量子位進行了編譯。

但強烈推薦學有余力的盆友直接讀英文原文(后附),一方面是因為李開復圍繞學術、產業(yè)和教育等三大方面,對Geoffrey Hinton進行功績介紹,字里行間也不乏一些鮮為人知的小故事,還有溢于言表的欽佩和贊美。

另一方面,也確實鍛煉英文的好機會。

OK,Here we go~

李開復圖靈獎推薦信曝光:AI時代里,Hinton是最值得嘉獎的人

李開復推薦信(量子位編譯版)

尊敬的ACM圖靈獎評選委員會:

我謹以此文表達個人最強烈的推薦和支持,提名Geoff Hinton為本年度的圖靈獎候選人。這是人工智能的時代,而在人工智能領域,沒人能比Geoff更有資格獲得這份嘉獎。

我現在是創(chuàng)新工場董事長及CEO,并曾作為高管任職于蘋果、SGI、微軟和谷歌。我曾是卡內基梅隆大學的助理教授,同時在這所大學獲得了博士學位。

也正是在CMU,1983年,我作為一名博士生結識了Geoff:修讀了他的神經網絡課程;并和他的研究團隊一起,嘗試將神經網絡應用于語音識別;我還在他的指導下完成了自己的輔修課程論文(關于將貝葉斯學習應用于博弈游戲),我的博士論文(用機器學習方法進行語音識別),也曾向Geoff和他的團隊尋求過建議。

李開復圖靈獎推薦信曝光:AI時代里,Hinton是最值得嘉獎的人

Hinton和李開復2017年會面,量子位配圖

雖然Geoff并非我的博士生導師,但他對于我博士論文的影響卻十分巨大。他的學生Peter Brown(統計機器翻譯的共同發(fā)明人,如今文藝復興科技的CEO)當時是我的老師,也正是他教會了我如何把不同種類的機器學習算法應用于語音識別,為我的博士論文打下了基礎。

其后1988年,我的博士論文實現了當時最好的語音識別模型,也促使語音識別領域,將重心從專家系統方法轉移到機器學習方法。鑒于Geoff的才華、堅韌和慷慨,如果我能從Geoff和Peter身上受益如此之多,想必還有成千上萬的受益者跟我一樣。

Geoff對于AI領域的貢獻是巨大、無可比擬的。在我最近出版的暢銷書 AI Supowerpowers: China, Silicon Valley, and the New World Order(中文名《AI·未來》)中,以通俗的說法描述了Geoff對于AI領域的貢獻:

曾經,人工神經網絡能做的事非常有限。復雜問題若要得出準確的結果,必須構建很多層的人工神經元,但神經元層數增加后,研究人員當時還未找到針對新增神經元有效的訓練方法。

在21世紀頭10年的中期,深度學習這項重大的技術性突破終于到來,知名研究人員杰弗里·辛頓找到了有效訓練人工神經網絡中新增神經元層的方法。這就像是給舊的神經網絡打了一針興奮劑,使它們的能力倍增,可以執(zhí)行更多、更復雜的工作,例如語音及物體識別。

性能大增的人工神經網絡——現在有了新的名字“深度學習”——開始把舊的系統遠遠甩在身后。多年來對神經網絡根深蒂固的成見讓人工智能的許多研究人員忽略了這個已經取得出色成果的“邊緣群體”,但2012年杰弗里·辛頓的團隊在一場國際計算機視覺競賽中的勝出[1],讓人工神經網絡和深度學習重新回到聚光燈下。

在邊緣地帶煎熬了數十年后,以深度學習的形式再次回到公眾視野中的神經網絡法不僅成功地讓人工智能回暖,也第一次把人工智能真正地應用在現實世界中。研究人員、未來學家、科技公司CEO都開始討論人工智能的巨大潛力:識別人類語言、翻譯文件、識別圖像、預測消費者行為、辨別欺詐行為、批準貸款、幫助機器人“看”,甚至開車。

李開復圖靈獎推薦信曝光:AI時代里,Hinton是最值得嘉獎的人

如果就學術成果而言,Geoff的引用超過25萬次,其中一半以上來自于過去5年;他的H指數是驚人的142;他是波茨曼機以及通過梯度下降法實現反向傳播(前者與Terry Sejnowski共同發(fā)布于1983年,后者則在1986年與David Rumelhart共同發(fā)布于《自然》雜志)兩項開創(chuàng)性工作的共同發(fā)明人,這些工作引入了神經網絡中隱藏層的思想,以及一種用于對其附屬參數進行訓練的優(yōu)美、易于計算的方法。

隱藏層讓軟件從“人類控制“(如專家系統)下得到解放,而反向傳播則讓非線性組合系統發(fā)現突出特征成為可能,以一種更接近于目標而非人類驅動的方式。

然而,這些思想對于其所處時代而言,當時過于超前。因為當時并沒有足夠的數據和算力,能讓這些理論上的方法解決實際生活中的問題,或是在競爭中壓倒其他方法。

于是在20世紀80年代初期,該領域被專家系統所統治,直到80年代末期,專家系統因過于脆弱和難以擴展成為歷史。

不過替代專家系統的也并非Geoff提出的構想(那時還太早),而是妥協于少量數據和算力的簡化版本的神經網絡。

我的博士論文(使用了隱馬爾科夫模型)討論的就是其中的一種。這些簡化過的方法確實能在一部分應用上作出貢獻,但如同專家系統一樣,它們并不能在那些最難解決的問題上進行擴展,如下圍棋、人類水平的語音和視覺。

然而時來運轉,從1985年到2015年,全球數據量和算力發(fā)生了巨大的增長。

舉例來說,我在1988年的博士論文使用了當時最大的語音數據庫,但它也只有100MB的大小。

而今天,最好的語音識別系統要在100TB的數據上進行訓練——這是一百萬倍的提升。有了數據上如此巨大的提升作為支持,Geoff的思想最終閃耀了起來——他的方法能將層的數量由1增加到1000,而數據量和模型復雜度的提升會使得深度學習系統持續(xù)進步。

事后再看這些問題,顯得異常容易。但在當時,現實卻是非常殘酷的。20世紀90年代對于像Geoff一樣的神經網絡研究者而言,是最黑暗的時刻。

Geoff早期的理論工作創(chuàng)造出了智能的火花,但數據和算力的匱乏卻阻礙了這些深度學習系統展示出更優(yōu)秀的性能。隨著科研經費消耗殆盡,許多神經網絡研究者將自己的工作轉移到了其他領域。然而,面對黯淡而又浮躁的科研資助環(huán)境,Geoff依然作為少數研究者(其他關鍵性研究者包括Yann LeCun和Yoshua Bengio)堅持了下來,不懈地將神經網絡方法繼續(xù)向前推進。

他搬到了加拿大,根據受限的經費環(huán)境調整了團隊,而后繼續(xù)努力將科學的邊界向前拓展。

Geoff在接下來的30年中持續(xù)地為神經網絡方法做著貢獻,其中包括多專家模型、亥姆霍茲機、神經動畫生成系統、概率推理模型、隨機領域嵌入、鄰域組件分析、t-SNE,以及諸多創(chuàng)新思想和研究。

鮮有某項技術可以徹底顛覆多個領域的研究,而深度學習就是其中之一。從2010年到2016年,本質上講,整個感知領域——語音識別、圖像識別、計算機視覺都轉移到了深度學習的路徑上,就是因為Geoff和他的同事們證明了——對于感知而言,深度學習就是最佳也最能普及的方法。

在整個人工智能領域,人類的感知能力(聽、看和理解)被視作人類獨有的天賦,但對于AI而言,這是一個巨大挑戰(zhàn)。值得一提的是,還有一項巨大的挑戰(zhàn)是下圍棋,已經被Deepmind開發(fā)的AlphaGo,同樣使用深度學習方法攻克了。當時震驚了整個世界,也成了“AI革命”的催化劑。

李開復圖靈獎推薦信曝光:AI時代里,Hinton是最值得嘉獎的人

現在回顧,Geoff的團隊是如此顛覆計算機視覺研究的:2012年,他的團隊構建了一個基于神經網絡的系統,在ImageNet 1000個類的物體識別競賽中將錯誤率一下降低了40%。

在此之前,計算機視覺領域的研究社群已經習慣了每年一小部分的增量提升,而Geoff團隊的成績震驚了整個社群——人們未曾想象過,一個“局外人”會以一種“非傳統方法”以如此大的優(yōu)勢贏下競賽。

如果說反向傳播是Geoff最重要的理論貢獻,那么其團隊在ImageNet競賽中取得的成果則是Geoff最為人認可的貢獻。那屆ImageNet競賽結果所掀起的微波,最終成為了深度學習大潮中的滔天巨浪。

深度學習的浪潮如今也正在改變每一個行業(yè)。舉例來說,作為一名身處中國的投資人,我本人也品嘗過這股春風帶來的甘霖:Geoff在2012年發(fā)表的論文以及當年ImageNet上的成果,為4家中國的計算機視覺公司帶來了靈感,而現在他們的總估值超過120億美元。但請記住,這還只是Geoff的工作在一個國家、一個小小的領域內帶來的成果。

此外,Geoff的工作還使得深度學習顛覆了語音識別領域(也是我博士時期的研究方向),幫助當時加盟百度的吳恩達,在2015年使得機器識別的準確度超越人類。

從更廣闊的視角上看,世界上的每一家科技巨頭(谷歌、微軟、IBM、Facebook、亞馬遜、百度、騰訊和阿里巴巴)都為深度學習打造了自己的平臺,甚至將自己重新標榜為“AI公司”;而在風投領域,我們則見證了深度學習驅動下大批獨角獸公司的出現(僅在中國就有超過20家)。

同時,由于深度學習需要的強大算力無法從傳統的CPU中獲得,為了負載深度學習所需的工作量,GPU開始被大規(guī)模使用,并由此引發(fā)了英偉達的崛起以及半導體工業(yè)的復活。

最為重要的是,我們的生活已經發(fā)生了深刻的變化:從搜索引擎,到社交網絡再到電子商務,從無人商店到無人汽車,從金融到醫(yī)療,幾乎所有能想象到的領域,都被深度學習的力量所重塑,或是顛覆。

在任何具有充足數據的領域,深度學習在用戶體驗、用戶粘性、營收和利潤方面都帶來了極大的提升。深度學習背后的核心思想(始于反向傳播)——一個目標函數可以被用來使商業(yè)指標最大化——已經對所有行業(yè)造成了深刻的影響,并幫助那些擁有數據、擁抱機器學習的公司獲得了難以置信的利潤。

總的說來,人工智能可以說是當今我們能夠成熟應用的技術中,最為令人興奮的一種。普華永道和麥肯錫預計,在2030年以前,AI會給全球GDP帶來12到16萬億美元的增長。

而AI領域最重要的進展,以及AI技術的成熟度被堅信的首要原因,就是Geoff在深度學習方面的工作成果。

誠然,每一位圖靈獎的獲獎者都對計算機科學領域有著極其重大的影響,但極少數能像Geoff一樣,改變了整個世界。

在變革者的角色之外,Geoff還是一位真正的思想領袖。雖然他總是言辭溫和,他卻是一位真正塑造并重塑整個研究社群的精神領袖。

他不知疲倦地教誨,不只是對他的學生,更是對這個世界。

正如他1986年創(chuàng)辦聯結主義學院時,親自與在計算機視覺和語音處理領域的人們去進行溝通,說服他們去理解并擁抱機器學習。然而,當2018年所有的工作都獲得了成功,整個世界都投入了深度學習的懷抱之時,他還繼續(xù)指出一條全新的道路。

在行業(yè)紛紛向深度學習靠攏,大公司們不斷收集更多的數據并開始引領深度學習的“工業(yè)化”之時,他卻號召人們向前一步,去創(chuàng)造“下一個深度學習”。換而言之,解決AI根本問題的一種全新方法,幫助機器更接近真正的人類智慧。

他在思想上的領袖魅力來源于他畢生的愿景,以及對于更好地去理解人類認知能力的追尋。盡管深度學習是一項正在改變世界的重大突破,他卻僅僅將其視為實現自己長期愿景路途中的一塊踏腳石。他最近在膠囊網絡方面的新工作,也正再一次讓研究者們重新審視自身在Geoff愿景中的角色和責任。

我堅信,Geoff就是今天的人工智能領域內最重要的人物,沒有之一。

他對于學界和業(yè)界的貢獻同樣地突出。他不僅是一位優(yōu)秀的、引領性的學者,亦是一位孜孜以求、慷慨、堅韌、優(yōu)雅、有原則的紳士。他是所有年輕計算機科學家的楷模。他的工作大大超越了神經網絡和機器學習的范疇,極大地影響了計算機視覺、語音及信號處理、統計學、認知科學以及神經科學。

我想不出其他任何人比他更有資格獲得圖靈獎,并在此敦促評選委員會在今年選擇Geoff作為獲獎人。

李開復圖靈獎推薦信曝光:AI時代里,Hinton是最值得嘉獎的人

英文原件內容

Dear ACM Turing Award Committee Members:

I am writing to give my strongest recommendation to support Geoff Hinton’s nomination for Turing Award. This is the decade of Artificial Intelligence, and there is no one more qualified than Geoff in AI.

I am the Chairman and CEO of Sinovation Ventures, and have previously held executive positions at Apple, Microsoft, SGI, and Google. I was an assistant professor at Carnegie Mellon, and also received my Ph.D. there. I got to know Geoff at Carnegie Mellon, when I entered as a Ph.D. student in 1983. I took classes on neural networks from him, worked with his research team on applying neural networks to speech recognition, and was supervised by him for my minor thesis (on applying Bayesian learning to game-playing), and consulted him and his team on my Ph.D. thesis (machine learning approach to speech recognition).

While Geoff was not my Ph.D. advisor, his impact on my Ph.D. thesis was tremendous. His student Peter Brown (co-inventor of statistical machine translation, now CEO of Renaissance Technologies) was my mentor, and taught me how to apply various types of machine learning algorithms to speech recognition. This was a primary reason that helped my Ph.D. thesis to become the best-performing speech recognizer in 1988, which helped shift the speech recognition field from expert-systems approach to machine-learning approach. If I have benefited so much from Geoff and Peter, there must be thousands of other beneficiaries, given Geoff’s brilliance, persistence, and generosity.

Geoff’s contributions to AI are immense and incomparable. In my recent best-selling book AI Supowerpowers: China, Silicon Valley, and the New World Order, I described Geoff’s contribution as follows, in layman’s language:

Deep learning’s big technical break finally arrived in the mid-2000s, when leading researcher Geoffrey Hinton discovered a way to efficiently train those new layers in neural networks. The result was like giving steroids to the old neural networks, multiplying their power to perform tasks such as speech and object recognition.

Soon, these juiced-up neural networks—now rebranded as “deep learning”—could outperform older models at a variety of tasks. But years of ingrained prejudice against the neural networks approach led many AI researchers to overlook this “fringe” group that claimed outstanding results. The turning point came in 2012, when a neural network built by Hinton’s team demolished the competition in an international computer vision contest.

In the twelve years since Geoffrey Hinton and his colleagues’ landmark paper on deep learning, I haven’t seen anything that represents a similar sea change in machine intelligence.

In terms of academic accomplishments, Geoff has more than 250,000 citations, with more than half in the last five years. He has an astoundingly high H-index of 142. He was the co-inventor of the seminal work on Boltzmann Machines and backpropagation using gradient descent (published in 1983 with Terry Sejnowski, and the Nature paper with David Rumelhart in 1986). This work introduced the idea of hidden layers in neural networks, along with a mathematically elegant and computational tractable way to train their affiliated parameters. Hidden layers freed the software from “human control” (such as expert systems) and back propagation allowed non-linear combination to essentially discover prominent features (in a more goal-directed way than humans) in the process. However, it turned out that these ideas were before their time, as there were not enough data or computing power to enable these theoretical approaches to solve real-world problems or beat other approaches in competitions. The early-1980’s were dominated by expert systems, which became discredited in by late-1980’s when they were proven to be brittle and unscalable. What displaced expert systems was not Geoff’s proposals (which were too early), but simplified versions of neural networks which were compromised to work with less data and computation. My Ph.D. thesis (using hidden Markov models) was among them, and these simplified approaches were able to make some contributions with some applications, but like expert systems, they were not able to scale to the hardest problems (such as playing Go, human-level speech or vision).

From 1985 to 2015, the amount of data and computation increased tremendously. For example, my 1988 Ph.D. thesis used the largest speech database at the time, which was only 100 MB. Today, the best speech recognition systems are trained on 100 TB of data – a million-fold increase. And with that much increase in data size, Geoff’s approach (later re-branded deep learning) finally shined, as it could increase the number of layers from one to thousands, and deep learning systems continued to improve as the data size and the complexity of the model increased.

This is easy to see in hind sight. But at the time, the reality was quite cruel. The 1990s were the darkest hours for neural network researchers like Geoff. Geoff’s earlier theoretical work created intellectual spark, but the lack of data and computation prevented these deep learning systems from demonstrating superior performance. Funding dried up, and many neural network researchers moved away to other areas. But Geoff was among the few researchers (other key researchers include Yann LeCun and Yoshua Bengio) who persisted on pushing forward the neural network approach, despite a frosty and fickle environment for funding. He moved to Canada, adjusted his group to a smaller funding environment, and continued to push the frontier.

His contribution to the neural network approach continued in the next 30 years, including the mixture of experts model, the Helmholtz machine, the neural-animator system, probabilistic inference, stochastic neighbor embedding and neighborhood component analysis, t-SNE, and many other innovative ideas.

Very few technologies have disrupted multiple areas of research completely, but deep learning did. From 2010 to 2016, essentially the entire field of perception – speech recognition, image recognition, computer vision, switched to deep learning, as Geoff and his colleagues proved deep learning to be the best and most generalizable approach for perception. In the entire fiend of Artificial Intelligence, human perception (to hear, see, and understand) was considered one of the aspects that set the humans apart and a grand challenge for AI (incidentally, playing Go was another, which was conquered by Deepmind’s AlphaGo, which also used deep learning during the matches which shocked the world, and was another catalyst for the “AI revolution”).

Here is how Geoff’s team disrupted computer vision research, In 2012, his team built a neural-network based system that cut the error rate by 40% on ImageNet’s 1000-object recognition task and competition. The computer vision community was accustomed to incremental improvements annually. Geoff’s team’s results shocked that community, as a relative “outsider” using an “unconventional approach” won by such a large margin. If backpropagation was Geoff’s most important theoretical contribution, his team’s work on the ImageNet competition was Geoff’s most recognized contribution. That ImageNet result started the first ripple that ultimately became the deep learning tidal wave.

The deep learning tidal wave (the most central part of the “AI revolution”) is now changing every industry. As an example, as a venture capitalist in China, I was a part of a “tiny” side effect: Geoff’s 2012 paper and ImageNet result inspired four computer vision companies in China, and today they are collectively worth about $12 billion. Keep in mind, this was just one small field in one country based on one of Geoff’s result. Geoff’s result also led to deep learning disrupting speech recognition (the area of my Ph.D. work), resulting in super-human accuracy in 2015 by Baidu’s Andrew Ng (recruited to Baidu after Geoff joined Google part-time). And much more broadly, every technology monolith (Google, Microsoft, IBM, Facebook, Amazon, Baidu, Tencent, Alibaba) built its platform for deep learning, and re-branding themselves as “AI companies”. And in venture capital, we saw the emergence of many unicorns (in China alone there are over twenty) powered by deep learning. Also, deep learning required much compute power that traditional CPUs could not handle, which led to the use of GPUs, the rise of Nvidia and the re-emergence of semiconductors to handle deep learning work-load. Most importantly, our lives have changed profoundly – from search engines to social networks to e-commerce, from autonomous stores to autonomous vehicles, from finance to healthcare, almost every imaginable domain is either being re-invented or disrupted by the power of machine learning. In any domain with sufficient data, deep learning has led to large improvements in user satisfaction, user retention, revenue, and profit. The central idea behind deep learning (and originally from backpropagation) that an objective function could be used to maximize business metrics has had profound impact on all businesses, and helped the companies that have data and embraced machine learning to become incredibly profitable.

In aggregate, Artificial Intelligence (AI) is arguably the most exciting technology ripe for applications today. PWC and McKinsey predicted that AI would add $12-16 trillion to the global GDP by 2030. The most important advance and the primary reason that AI is believed to have matured is Geoff’s work on deep learning. While every Turing Award recipient has made seminal impact to Computer Science, few have changed the world as Geoff is doing.

Beyond the role of an innovator, Geoff was also a true thought leader. While he is soft-spoken, he is a spiritual leader who really shapes and reshapes the overall research community. He was a tireless in teaching not only his students but the world. For example, he started the Connectionist School in 1986. He personally connected to and persuaded people in computer vision and speech processing to understand and embrace deep learning. Yet, after all that work succeeded, and the world was won over by deep learning in 2018, he set a new direction. Because industry has rallied around deep learning, and large companies were gathering more data and leading the “industrialization” of deep learning, he made an exhortation to move on and focus on inventing “the next deep learning”, or fundamentally new approach to AI problems that could move closer to true human intelligence.

His thought leadership was grounded in his life-long vision and quest to better understand human cognition. While deep learning is a breakthrough that is changing the world, he sees it as only a stepping stone towards the realization of his long-term vision. To set another example, his new work on capsule leaning is again causing researchers to rethink their role and responsibilities in Geoff’s vision.

I believe Geoff is the single most important figure in the field of Artificial Intelligence today. His contributions to academia and industry are equally outstanding. He is not only a brilliant and inspirational scholar, but also an inquisitive, generous, persistent, decent, and principled gentleman, who is a role model for any aspiring young computer scientist. His work went well beyond neural networks and machine learning, and has greatly impacted computer vision, speech and signal processing, statistics, cognitive science, and neural science. I cannot think of anyone else more deserving of the Turing Award, and urge the committee to select Geoff as the recipient this year.

Sincerely,

Kai-Fu Lee, Ph.D.

Chairman & CEO, Sinovation Ventures

Fellow, IEEE

Honorary Ph.D., Carnegie Mellon University

Honorary Ph.D., City University of Hong Kong

版權所有,未經授權不得以任何形式轉載及使用,違者必究。
五月婷婷丁香六月| 韩国午夜理伦三级不卡影院| 国产综合av一区二区三区| 亚洲女同女同女同女同女同69| 性活交片大全免费看| 午夜一区二区三区视频| www.浪潮av.com| 一区二区三区免费在线观看| 北条麻妃视频在线| 免费不卡在线观看| 九色自拍视频在线观看| 欧美一级日韩不卡播放免费| 国产99在线 | 亚洲| 亚洲精品午夜精品| 久久久久久久久久久一区| 99久久久无码国产精品| 日韩欧美123区| 日韩精品一区二区免费| 成人激情在线播放| 欧美日韩精品专区| 成人av一区二区三区在线观看| 精品国产乱码久久久久久蜜柚| 国产三级漂亮女教师| 国产精品一区二区三区免费视频 | 国产亚洲精品久久飘花| 91国产免费视频| 最新在线黄色网址| 日韩亚洲精品电影| 无码人妻熟妇av又粗又大| 91国内揄拍国内精品对白| av免费一区二区| 中文字幕亚洲自拍| 成人一级视频在线观看| 老牛影视av牛牛影视av| 色播视频在线播放| 欧美精品第三页| 久久国产日韩欧美| 亚洲第一主播视频| a级大片免费看| 深夜福利亚洲导航| 青青青伊人色综合久久| 国产伦精品一区二区三区照片 | 亚洲一级片在线看| 亚洲黄色激情视频| 亚洲成人一区二区三区| 欧美一区二区三区视频在线| 国产黄色片免费在线观看| 亚洲精品美女在线| 麻豆免费精品视频| 野花视频免费在线观看| 亚洲精品久久久一区二区三区 | 国产老熟妇精品观看| 精品91自产拍在线观看一区| 欧美精品色视频| 欧美国产乱视频| 亚洲一本大道在线| 91九色蝌蚪porny| 国产日韩精品一区二区浪潮av| 一级片久久久久| 国产精品久久久久影院| 亚洲黄色精品视频| 亚洲第一导航| 亚洲综合精品在线| 国产精品网站大全| 韩国av一区二区三区四区| 四虎影院一区二区三区 | www.男人天堂网| 一区二区三区欧美亚洲| 亚洲精品久久一区二区三区777| 日韩你懂的在线观看| 激情五月婷婷小说| 国产91色在线播放| 国产原创一区二区| 免费看毛片的网址| 91福利区一区二区三区| 视频国产一区二区| 2019中文字幕在线免费观看| 日本在线不卡视频一二三区| 三年中文高清在线观看第6集 | 国产高清一区二区三区四区| 中文字幕欧美日韩精品| www.污视频| 欧美日韩无遮挡| 玉米视频成人免费看| 中国一级特黄录像播放| 日韩在线视频导航| 午夜影院免费体验区| 中国成人在线视频| 色拍拍在线精品视频8848| 久久久久久久久久网站| 国产精品18久久久久久首页狼| 国产精品一二三在| av五月天在线| 国产视频精品久久久| www.麻豆av| 手机看片福利永久国产日韩| 欧美性xxxxx极品娇小| 少妇影院在线观看| 国产主播在线一区| 国产精品另类一区| 国产真人做爰视频免费| 啪一啪鲁一鲁2019在线视频| 成人黄色网址在线观看| 成人亚洲免费视频| 久久视频在线直播| 久久99热这里只有精品| 欧美日韩大尺度| 国产午夜精品麻豆| 亚洲精品一区二区三区区别| 91手机视频在线| 91精品欧美一区二区三区综合在| 欧美男人天堂网| 日韩中文一区| 欧美亚洲国产一卡| 亚洲性猛交富婆| 中文字幕久久一区| 日韩一级二级三级精品视频| 国产又大又黄又爽| 免费cad大片在线观看| 欧美一卡2卡3卡4卡| 国产黄色片免费观看| 激情五月六月婷婷| 亚洲精品xxxx| 日韩av电影一区| 亚洲第一狼人区| 久久精品视频免费播放| 国产一区91精品张津瑜| 亚洲少妇一区二区三区| 日韩av男人的天堂| 一区二区中文视频| 国产香蕉在线视频| 日韩久久不卡| 欧美mv和日韩mv的网站| 五月婷婷在线播放| 99热在线这里只有精品| 中文字幕亚洲字幕| 成人91在线观看| 亚洲精品国产91| 91九色蝌蚪成人| 色哟哟一区二区三区| 97精品久久人人爽人人爽| 性一交一乱一伧国产女士spa| 日韩经典一区二区三区| 国产剧情av麻豆香蕉精品| 久久精品综合视频| 亚洲一区二区三区在线免费观看| 婷婷久久综合九色综合绿巨人| 亚洲国产精品无码久久久| 美女av免费观看| 日韩在线观看免费全| 91在线精品一区二区| 麻豆网址在线观看| 日本精品二区| 亚洲精选中文字幕| av电影天堂一区二区在线观看| 俄罗斯毛片基地| 国产一区国产精品| 亚洲国产成人精品久久| 国产精品一二二区| 日本美女黄色一级片| 翔田千里亚洲一二三区| 国产丝袜一区二区| 91麻豆精品在线观看| 国产午夜激情视频| 免费视频爱爱太爽了| 久久91亚洲精品中文字幕| 亚洲人成在线播放网站岛国| 久久精品99北条麻妃| 99视频精品免费| 日韩av电影国产| 在线观看一区日韩| 捆绑调教一区二区三区| 亚洲aaa视频| 综合一区中文字幕| 麻豆一区二区在线观看| 一区二区三区在线观看国产| 国产99久一区二区三区a片| 在线视频观看91| 99精品国产高清一区二区| 精品日韩欧美在线| 91网上在线视频| 精品不卡一区二区| 国产三级三级看三级| 91午夜在线播放| 亚洲国产高清福利视频| 久久久国产综合精品女国产盗摄| 四虎影院在线免费播放| 亚洲性图一区二区| 国产精品亚洲综合| 自拍偷拍亚洲区| 亚洲一区二区三区在线看| 亚洲人成色777777精品音频| 欧美三级视频网站| 丰满的少妇愉情hd高清果冻传媒| 清纯唯美亚洲综合| 欧美一级电影网站| 国产日产欧美一区| 亚洲精品免费在线观看视频| 日本黄色小视频在线观看| 中国女人做爰视频| 国产成人在线播放| 日韩精品中午字幕| 国产精品黄色在线观看| 日韩一级片免费观看| 蜜桃av.com| 国产综合免费视频| 国产一区国产精品| 久久久久久中文字幕| 欧美猛男男办公室激情| 2021久久国产精品不只是精品| 亚洲中文一区二区三区| 亚洲熟妇无码av| 久久精品xxx| 91系列在线观看| 精品国产拍在线观看| 色av成人天堂桃色av| 北条麻妃一区二区三区| www.五月婷| 欧美黑人猛猛猛| 国产wwwxx| 日韩av高清在线播放| 欧美一级免费视频| 日韩国产高清污视频在线观看| 一区二区三区免费看视频| 国产麻豆视频一区二区| 91精品国自产| 麻豆明星ai换脸视频| 天天做天天干天天操| 日本久久高清视频| 91手机在线视频| 欧美华人在线视频| 亚洲黄色av网站| 色综合天天综合色综合av| 久久久久久久久久久黄色| 午夜黄色小视频| 天堂а√在线中文在线新版 | 亚洲精品你懂的| 国产综合色产在线精品| 国产精品爽爽久久| 久久综合成人网| 噜噜噜在线视频| 日本一区二区黄色| 亚洲午夜在线观看| 操一操视频一区| 国内精品免费午夜毛片| 亚洲精品国产精品国自产在线 | 日本在线精品视频| 日韩中文字幕精品视频| 欧美一级片在线观看| 精品久久久视频| 国产精品免费久久久久| 成人爽a毛片一区二区免费| 欧美 日韩 人妻 高清 中文| 成人av网站在线播放| 久久久久亚洲av无码专区体验| jjzzjjzz欧美69巨大| 欧美性猛交久久久乱大交小说| 艳色歌舞团一区二区三区| 99视频在线播放| 国产精品高清免费在线观看| 欧美精品生活片| 一区二区三区视频免费| 精品成a人在线观看| 欧美日本一道本在线视频| 亚洲妇女屁股眼交7| 中文字幕日韩精品一区| 久久精品亚洲国产奇米99| 国产精品中文字幕一区二区三区| 久久久精品五月天| 不卡视频在线播放| 一区二区乱子伦在线播放| 日韩在线观看第一页| 欧美激情一区二区视频| 中文字幕求饶的少妇| 欧美成人午夜精品免费| 亚洲av永久无码精品| 中文字幕乱码在线人视频| 亚洲免费黄色网| 天天干在线影院| 亚洲天堂av线| 日本va中文字幕| 欧美激情成人网| 91蝌蚪视频在线观看| 50路60路老熟妇啪啪| 黄色免费观看视频网站| 国产高清精品在线观看| 黑人糟蹋人妻hd中文字幕| 免费看一级大黄情大片| 尤物av无码色av无码| 91视频 -- 69xx| 日韩av在线综合| 亚洲娇小娇小娇小| 日本免费观看网站| 久久精品国产露脸对白| 久久久久久久久久久影视| 无码人妻丰满熟妇区毛片蜜桃精品| 亚洲怡红院在线| 国产黄色一区二区三区| 久久久久久久穴| 成年人网站免费在线观看 | 久久裸体视频| 葵司免费一区二区三区四区五区| 日韩专区欧美专区| 韩国一区二区视频| 高清av一区二区| av一区二区三区黑人| 中文一区一区三区高中清不卡| 国产精品短视频| 亚洲综合激情另类小说区| 黑人巨大精品欧美一区二区三区| 日本国产一区二区| 日韩欧美一级片| 亚洲欧美在线看| 久久成年人免费电影| 欧美在线不卡区| 91精品久久久久久久久久久久久| **亚洲第一综合导航网站| 精品欧美国产| 一本色道久久88亚洲精品综合| 成 年 人 黄 色 大 片大 全| 成人免费xxxxx在线视频| 亚洲欧美日韩中文字幕在线观看| 国产男男chinese网站| 夫妻性生活毛片| 无码人妻av免费一区二区三区| va视频在线观看| 久久99久久精品| 久久先锋影音av鲁色资源网| 一区二区三区欧美日| 欧美亚洲丝袜传媒另类| 日韩电影中文 亚洲精品乱码| 欧美乱妇40p| 国产精品永久免费在线| 欧美一进一出视频| 亚洲国产精品久久久久婷蜜芽| 亚洲精品一区二区18漫画| 欧美日韩生活片| 国产91精品一区| 国产av精国产传媒| 丰满岳乱妇一区二区三区| 中文字幕制服丝袜成人av| 色国产综合视频| 亚洲欧美国产日韩中文字幕| 国产69精品99久久久久久宅男| 亚洲一区二区三区四区视频| 亚洲天堂av免费在线观看| 免费成年人高清视频| 国产成人在线网址| 中文字幕乱码在线观看| 日本伊人精品一区二区三区观看方式 | 成人免费91在线看| 黄网站色视频免费观看| 亚洲熟女乱综合一区二区| 男人操女人的视频网站| 草逼视频免费看| 懂色av一区二区三区免费观看| 一区二区三区在线视频观看58| 91精品国产综合久久精品app| 欧美精品亚州精品| 激情伦成人综合小说| 国产裸体舞一区二区三区| 91在线无精精品白丝| 国产又粗又猛又色又| 岛国精品在线观看| 色哟哟国产精品免费观看| 中文字幕亚洲一区| αv一区二区三区| 亚洲爆乳无码专区| √天堂中文官网8在线| 少妇精品高潮欲妇又嫩中文字幕| 久久久久一区二区三区四区| 欧美亚洲图片小说| 海角国产乱辈乱精品视频| 日本成人三级| 香蕉视频xxxx| 精人妻无码一区二区三区| 国产剧情一区在线| 日本乱码高清不卡字幕| 色中色综合影院手机版在线观看| 鲁丝一区二区三区免费| 九九热视频免费| 尤物视频免费观看| 成人不卡免费av| 在线播放日韩导航| 国产精品高清在线观看| 日本中文字幕亚洲| 国内毛片毛片毛片毛片毛片| 亚洲人视频在线观看| 夜夜嗨av一区二区三区| 日韩在线精品一区| 噜噜噜噜噜久久久久久91| 一区二区三区人妻| 国产裸体无遮挡| 1024成人网| 日韩中文字幕在线观看| 乱色588欧美| 午夜免费福利影院| xxxx18国产| 亚洲国产精品久久久男人的天堂| 精品国产一区二区三区四区在线观看 | 久久综合久久久| 最新版天堂资源在线| 国产99对白在线播放| 一区二区三区中文字幕| 久久综合88中文色鬼| 91免费视频黄| 久草视频中文在线| 91色porny在线视频| 亚洲欧洲一区二区三区久久| 人禽交欧美网站免费|